
Team 27 Website Documentation

Leo McArdle, Chris Rios, Daniel Min

Apr 20, 2019

Contents:

1 Requirements 1
1.1 Background . 1
1.2 Gathering Requirements . 1
1.3 Personas . 1
1.4 Essential Features - Must Haves . 2
1.5 Possible Features in the Future - Could Haves . 2
1.6 Use Cases . 2

2 Research 5
2.1 openEHR . 5
2.2 Existing solutions . 5
2.3 Technologies . 6
2.4 Summary of Final Decision . 7
2.5 References . 7

3 HCI - Human Computer Interaction 9
3.1 Design Principles . 9
3.2 Initial Sketches . 9
3.3 Personas Created . 10
3.4 Interactive Wireframe . 12
3.5 References . 14

4 Design 15
4.1 System Architecture . 15
4.2 Page Flow Diagram . 17
4.3 Design Patterns . 17
4.4 CDR Query Library . 18
4.5 Electron App . 19
4.6 Implementation of Key Functionalities in Deliverable Version . 20

5 Testing 21
5.1 Testing Strategy . 21
5.2 Unit and Integration Testing . 21
5.3 Automated Testing . 22
5.4 User Acceptance Testing . 23
5.5 References . 23

i

6 Evaluation 25
6.1 Summary of Achievements . 26
6.2 Critical Evaluation of Project . 27
6.3 Future Work . 28

7 Management 29
7.1 Legal Issues . 29
7.2 User Manual . 29
7.3 Deployment Manual . 32
7.4 Gantt Chart . 33

8 Glossary 35
8.1 openEHR . 35
8.2 EHR . 35
8.3 CDR . 35
8.4 AQL . 35
8.5 Archetype . 35
8.6 Templates . 35
8.7 CORS . 36
8.8 Federate . 36
8.9 Zoom . 36

9 Abstract 37

10 Key Features 39

11 Demonstration Video 41

12 Team Members 43

ii

CHAPTER 1

Requirements

1.1 Background

openEHR - pronounced ‘open air’ - is an open specification for storing patient data used by clinicans and developers
working in clinical contexts. However clinical data are often messy and mixed up, and each clinical application had
its own models, so moving data was very hard. Everyone was building their models over and over again which kept
causing problems. A new standard api to send models to but abstract data away from the database layer was needed.
Furthermore, this meant that only one CDR could be queried at once, which slowed down the work of the developers
in the field.

1.2 Gathering Requirements

We were able to gather the requirements from the users through direct semi-structured interviews with both our users
and our client by using Zoom.

1.3 Personas

The system will be used by developers who are working within the clinical field. We therefore created two personas -
an experienced developer who has been working in the clinical field for a long time, and a developer who has recently
transferred to the clinical field. They can be found in more detail in HCI.

1

Team 27 Website Documentation

1.4 Essential Features - Must Haves

Requirements Type
Register CDR environment variables* Functional
Support different CDR authentication requirements* Functional
Execute AQL on multiple CDRs and display the result Functional
Federate the result of AQL statement from multiple CDRs Functional
Check consistency of result of AQL statement from multiple CDRs Functional
Commit composition to multiple CDRs Functional
Easy-to-use GUI for new users Non-Functional
System must run smoothly without any noticeable lag Non-Functional

• Register CDR environment variables

– Possibly import postman environment files

• Support different CDR authentication requirements

– Ethercis requires session tokens

– Marand ThinkEHR supports Basic authentication

1.5 Possible Features in the Future - Could Haves

Requirements Type
Upload a template to multiple CDRs Functional
List templates from multiple CDRs Functional
Visualise tempaltes and archetypes - show data constraints Functional
Generate AQL from interacting with template visualisation Functional
Authentication to support multipler users Non-Functional
Generation of AQL from interaction with templates Functional

1.6 Use Cases

Use Case Logging In (UC1)
Description User enters login details and clicks login button
Primary Actor User
Secondary Actor System
Pre-condition None
Main flow

1. User opens the app
2. User enters his username
3. Clicks button to go to main page and display

CDRs

Post-condition None
Alternative Flow None

2 Chapter 1. Requirements

Team 27 Website Documentation

Use Case Add CDR (UC2)
Description User adds a new CDR from addition page
Primary Actor User
Secondary Actor System
Pre-condition User has logged on
Main flow

1. User enters add CDR page
2. User enters CDR details
3. Clicks button to add the CDR
4. CDR saved to the config file and a confirmation

window pops up
5. Change is reflected in the main page

Post-condition None
Alternative Flow None

Use Case Remove CDR (UC3)
Description User removes a CDR from list by clicking the bin button
Primary Actor User
Secondary Actor System
Pre-condition User has logged on and one or more CDRs exist in the

list
Main flow

1. User clicks on bin button next to CDR in list
2. The CDR is removed from the configuration file
3. Change is reflected in the main page

Post-condition None
Alternative Flow None

1.6. Use Cases 3

Team 27 Website Documentation

Use Case Query AQL (UC4)
Description User inputs an AQL query and clicks on the query but-

ton
Primary Actor User
Secondary Actor System
Pre-condition User has selected CDRs they wish to query from the list
Main flow

1. User inputs AQL query into text box
2. User clicks on the query button
3. System processes and interprets the query
4. Query result from the selected CDR(s) is returned

as a JSON tree

Post-condition None
Alternative Flow Error: 400 Bad Request (i.e. Incorrect AQL query)

(UC4.1)
Description AQL query was incorrect and system has failed to pro-

cess the query
Primary Actor User
Secondary Actor System
Pre-condition User has selected CDRs they wish the query from the

list
Main flow

1. User inputs AQL query into text box
2. User clicks on the query button
3. System processes and interprets the query
4. System is unable to interpret the query as it is in-

correct
5. Error: 400 Bad Request is shown in the results

box

Use Case Create JSON Table (UC5)
Description User creates a table of results from the given JSON tree
Primary Actor User
Secondary Actor System
Pre-condition User and system has successfully completed a query
Main flow

1. User clicks on Create Table from JSON button
2. System creates a table from the JSON tree
3. The tree is displayed on a pop-up window

Post-condition None
Alternative Flow None

4 Chapter 1. Requirements

CHAPTER 2

Research

2.1 openEHR

openEHR is a technology for e-health, consisting of open specifications, clinical models and software that can be used
to create standards, and build information and interoperability solutions for healthcare.[1]

Much of our research centred around understanding the openEHR ecosystem. Our client was an invaluable resource
in this, taking the time to explain its concepts and elements to us. We also did some research of our own, from
information avaiable online[1][2].

2.2 Existing solutions

Our client gave us access to a similar proprietary tool to the one we’d be building, Think!EHR Explorer.

5

Team 27 Website Documentation

We tested the tool to get a feel what what potential users would be used to. Naturally, our aim was to go beyond what
this tool did, and make a tool capable of querying multiple CDRs concurrently.

2.3 Technologies

2.3.1 Languages

We settled upon JavaScript since all members of our team had used it in the past or were familiar with it, and our client
had recommended doing it this way.

We chose against making a browser-based webapp because CORS (Cross-Origin Resource Sharing) could have posed
a problem with some CDRs not being configured correctly to be queried from a browser. So instead we decided to
use Electron[3] to create a desktop application where this would not be a problem. Creating a desktop application also
means that we can create executable files which can be easily distributed to users.

We have also decided to incorporate elements of modern JavaScript such as ES6 modules, Promises and the Fetch
API, to build our project in a forward-thinking way and produce a future-proof solution. While some of these features
aren’t implemented in Node.js today, it is very likely that they will be in the very near future[4]. However for now,
we can convert code written using them into JavaScript which current versions of Node.js can run using tools like
Babel[5].

6 Chapter 2. Research

Team 27 Website Documentation

2.3.2 Test Frameworks

While researching on modern, up-to-standard and effective ways of JavaScript unit testing, we found an article on
the Internet by Welldone Software[6] that had clearly laid out various information about testing on JavaScript. We
therefore took the advices found on the article and looked into using Jest for the openEHR Explorer.

Its documentation showed it to be a powerful testing framework, and when using it we found it very pleasant and
straightforward.

For mocking HTTP requests and responses in our tests we found Nock[7]. Nock is particularly powerful because it
allows one to run a real HTTP request in a test, save the response, and then use those saved values in tests going
forward. This is especially useful given our need to test querying against a complex external API, where manually
running the queries and copying the result over would be too tedious and error prone.

2.3.3 Documentation Generators

JSDoc[8] is the standard for annotating JavaScript code with documentation, and we decided on using documenta-
tion.js[9] to turn that into readable documentation given its ease of use with minimal configuration.

2.4 Summary of Final Decision

Electron will allow us to create a multi-platform application and allow us to focus on the development of the system by
removing the chance of CORS causing a problem. A desktop application means that the system can also be distributed
easily with executable files to the users.

We will be using a multitude of modern tools such as Nock, Jest, etc. to effectively test our code as much as possible.

JSDoc will provide clear annotations and documentation for any future programmers who wish to contribute to in the
development of the openEHR Explorer.

All of the above come together to reach our goal - creating a smooth, forward-minded system that is able to match the
needs of the users.

2.5 References

• [1] https://www.openehr.org/about/what_is_openehr

• [2] https://specifications.openehr.org/

– https://specifications.openehr.org/releases/QUERY/latest/AQL.html

– https://openehr.github.io/specifications-ITS-REST/

– https://www.ehrscape.com/api-explorer.html

• [3] https://electronjs.org/

• [4] https://medium.com/@giltayar/native-es-modules-in-nodejs-status-and-future-directions-part-i-ee5ea3001f71

• [5] https://hackernoon.com/7-different-ways-to-use-es-modules-today-fc552254ebf4

• [6] Vitali Zaidman, “An Overview of JavaScript Testing in 2018”, 9th February 2018 [Online] https://medium.
com/welldone-software/an-overview-of-javascript-testing-in-2018-f68950900bc3

• [7] https://github.com/nock/nock#readme

• [8] http://usejsdoc.org/

2.4. Summary of Final Decision 7

https://www.openehr.org/about/what_is_openehr
https://specifications.openehr.org/
https://specifications.openehr.org/releases/QUERY/latest/AQL.html
https://openehr.github.io/specifications-ITS-REST/
https://www.ehrscape.com/api-explorer.html
https://electronjs.org/
https://medium.com/@giltayar/native-es-modules-in-nodejs-status-and-future-directions-part-i-ee5ea3001f71
https://hackernoon.com/7-different-ways-to-use-es-modules-today-fc552254ebf4
https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2018-f68950900bc3
https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2018-f68950900bc3
https://github.com/nock/nock#readme
http://usejsdoc.org/

Team 27 Website Documentation

• [9] https://documentation.js.org/

8 Chapter 2. Research

https://documentation.js.org/

CHAPTER 3

HCI - Human Computer Interaction

3.1 Design Principles

Ben Shneiderman outlines that there are eight design principles of HCI[1]. The team has decided to adopt some of the
principles of Shneiderman that we believed to be particularly important. This section will explore how the principles
affected the team’s implementation of the HCI:

• Consistency

• Our system has a universal theme/layout which prevents from causing confusion for a first time user.

• Shortcuts for frequent users

• While a simple and consistent design provides advantages for new users, frequent users may find this to be
repetitive in certain parts of the system. We have therefore minimised screen movement in our system to allow
the user to carry out similar tasks in quick succession.

• Easy revesal of actions

• It is always possible that even an experienced user will carry out an incorrect action, and being able to easily re-
vert any changes in the system will provide relief for the user - for example in openEHR Explorer, a wrong CDR
might be added; we have therefore allowed the user to easily remove any CDRs that is unnecessary/incorrect.

• Reduce short-term memory load

• ‘limitation of human information processing in short-term memory requires that displays be kept simple’ -
the team has followed Shneiderman’s statement and has reduced multiple page displays as much as possible,
condensing the crucial functions of the system to be contained within a single page.

3.2 Initial Sketches

After we had gathered the requirements from the client and the users, we started sketching possible solutions prior to
the creation of the first iteration of a prototype individually to increase the chances of each member devising a unique
solution. Once the sketches were completed by all three members, we compared the results to come up with a version
that we used to create the first iteration of the prototype.

9

Team 27 Website Documentation

3.3 Personas Created

The team created two personas. The personas helped the team to come up with a HCI that would be enjoyed by a
range of users.

• The first persona is of an experienced developer

10 Chapter 3. HCI - Human Computer Interaction

Team 27 Website Documentation

• The second persona is of a developer who is not yet familiar with the medical industry.

3.3. Personas Created 11

Team 27 Website Documentation

3.4 Interactive Wireframe

https://projects.invisionapp.com/share/V9OIKT03CQS#/screens/325133873_Select_Cdr

3.4.1 First Iteration

From the gathrered requirements and the sketches produced, we were able to create our first iteration of a prototype:

12 Chapter 3. HCI - Human Computer Interaction

https://projects.invisionapp.com/share/V9OIKT03CQS#/screens/325133873_Select_Cdr

Team 27 Website Documentation

Feedback

After we had completed the first prototype of the HCI, we allowed our potential users to experiment with it and give
feedback on the first version.

Then, the group once again drew further sketches on a section of the solution that we had previously missed out -
manipulation and the visualisation of the results data.

3.4. Interactive Wireframe 13

Team 27 Website Documentation

3.4.2 Second Iteration

Using the feedback and the new set of sketches, we were able to build upon the first prototype to expand its features.

3.5 References

• [1] Ben Shneiderman, ‘Shneiderman’s “Eight Golden Rules of Interface Design”’, 12th September 2013 [On-
line] https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design

14 Chapter 3. HCI - Human Computer Interaction

https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design

CHAPTER 4

Design

4.1 System Architecture

We decided to separate out the project into two components to make developing them concurrently easier, to make
testing easier in isolation, and finish the project with deliverables which are maximally useful to the openEHR ecosys-
tem.

15

Team 27 Website Documentation

16 Chapter 4. Design

Team 27 Website Documentation

4.2 Page Flow Diagram

4.3 Design Patterns

4.3.1 Iterators

Iteration solves the problem of accessing and traversing objects without exposing the data structure and representation.

In openEHR Explorer, an iterator is used to traverse through the list of CDRs for actions such as displaying the list
itself.

4.3.2 Asynchronous Methods

Asynchronous methods solve the problems that could be caused by potentially long-running programs by allowing the
next method in the thread of execution to be invoked.

Promises allows for asynchronous programming to be employed in JavaScript and has therefore been extensively used
for the back-end of openEHR Explorer.

4.3.3 Test-Driven Development

Test-Driven Development (also commonly referred to as TDD) is an increasingly important aspect of programming.
TDD ensures that there is a very high coverage of testing of the code as each functionality has a corresponding test.

4.2. Page Flow Diagram 17

Team 27 Website Documentation

The team has followed the TDD methodology to ensure the back-end of the code has been thoroughly tested.

4.3.4 Factory

A factory is a that forms the basis of many software design patterns. A factory is an object that is used to create other
objects - a factory method is a subroutine that returns an object of varying class.

Factories are mainly used in openEHR Explorer to create the CDR objects.

4.3.5 Balking

Balking refers to the execution of an action when an object is in a particular state, and the method will not return
anything when the object is in an inappropriate state. For example, if an object needed to access a method in a file but
it has been zipped, an exception would be thrown/the object would ‘balk’ at the request.

The team has taken a slightly different approach to balking - we were unhappy with the idea of ‘no return’ defined by
balking, so instead we have decided to ensure that no balking would happen. For example, to avoid AQL queries from
being executed on unwanted CDRs, openEHR Explorer will deselect all CDRs by default upon startup.

4.3.6 Proxy

A proxy is an object serving as an interface to another class. This provides a controlled access to a particular object,
and could additionally provide functionalities when accessing the object.

In openEHR Explorer, all CDRs that have been saved by the users are stored on a configuration file - constantly reading
this file could be very resource-intensive if the file increases in size significantly. Therefore, a proxy has been used to
provide access to the stored values without having to load the configuration file over and over again.

4.4 CDR Query Library

Initial prototype source code.

To handle retrieving data from CDRs, federating it, and committing new data to CDRs. In this initial prototype all that
the library is able to do is send an AQL query to one or multiple CDRs, and concatenate their results.

However it’s been built with modern development practices, which makes extending this functionality incredibly
simple:

• We followed the test-driven development methodology, so the code is thoroughly tested:

18 Chapter 4. Design

https://github.com/ucl-openehr-explorer/openehr-cdr-query/tree/eba929b8cc92a45b6cded642a9457be24b78d95a

Team 27 Website Documentation

• We used JSDoc and documentation.js to generate extensive API documentation for the code:

• We used the latest and greatest additions to JavaScript (ES6 modules, Promises, the Fetch API, among others),
utilising Babel to make them backwards compatible with older JavaScript engines and versions of Node.js

By building this library in isolation from the Electron app, we give developers in the openEHR ecosystem the option
of incorporating this library into their own projects.

While in its prototype phase it only runs in Node.js, with only a little work it could be made to work in the browser
too.

4.5 Electron App

4.5.1 Data Storage

We have decided to use JSON to store the credentials of the CDRS as it is human readable and is widely used as a
configuration file across the industry.

4.5.2 Initial Prototype

Initial prototype source code.

The Electron app utilises the CDR Query Library to provide a GUI which users can use to query CDRs.

4.5. Electron App 19

https://travis-ci.org/ucl-openehr-explorer/openehr-cdr-query/builds/478416742?utm_source=github_status&utm_medium=notification
https://github.com/ucl-openehr-explorer/openehr-cdr-query/tree/eba929b8cc92a45b6cded642a9457be24b78d95a#api
https://github.com/ucl-openehr-explorer/electron-app/tree/aee92465da20285038f4539700db745d0bb454dd

Team 27 Website Documentation

In this initial prototype, users can add CDRs, send an AQL query to a subset of them, and get the raw data back.

4.6 Implementation of Key Functionalities in Deliverable Version

• Login system for users with different lists of CDRs

– Different users will have their own lists of CDRs they wish to query - openEHR Explorer can accom-
modate this problem.

• AQL querying to multiple CDRs

– The existing solution only allows the user to query a single CDR - openEHR Explorer allows querying
of multiple CDRs at once.

• Return results from multiple CDRs in one federated JSON tree

– The client and users have expressed that they would like to see all the results combined into one.

• Creating a table from the JSON tree for greater readability

– While JSON trees are human-readable, a table can be used with ease by users with little previous
experience.

• Adding CDRs from multiple vendors with different authentication systems

– Further strengthens the ability to query multiple CDRs at once.

• Removing saved CDRs from list

– User can easily remove any unused CDRs or CDRs with incorrect credentials from the list, preventing
cluttering.

20 Chapter 4. Design

CHAPTER 5

Testing

5.1 Testing Strategy

From the beginning of the development of the back-end, we have followed the TDD methodology to ensure high
coverage of the code. This will also help us create unit and integration tests.

We have used Jest - a testing framework developed and maintained by Facebook[1]. It is open-source and has become
increasing popular over the last few years. Jest’s primary advantage is that it works ‘out of the box’ without any
configuration and it is very simple to use.

Nock has been used to simulate/mock HTTP requests and responses as mentioned in Research.

5.2 Unit and Integration Testing

The TDD methodology has meant that thorough unit and integrations have been written during development. The
integration tests have been created as a composition of multiple unit tests that we seemed belonged together as a part
of a group. For example, unit tests that are querying CDRs have been grouped and can be performed in a series - below
shows a snippet of the test of openEHR Explorer:

21

Team 27 Website Documentation

Below shows an example of the above tests being run in a sequence.

5.3 Automated Testing

Naturally, following the TDD methodology has given way to test automation. They can be run quickly through Jest
and can be repeated many time without difficulty.

22 Chapter 5. Testing

Team 27 Website Documentation

5.4 User Acceptance Testing

User acceptance testing is especially important as a system which the user and the client are not satisfied with will
see very little use even if the system has thorough functionality testing. We have therefore given great attention to
constantly receive feedback from our expected users and client.

Our client is distinct from other usual clients in that the client will also be a user. Therefore our client was able
to provide views of openEHR Explorer both as a client and an user which is invaluable. We believe this has also
significantly reduced the time taken of the user acceptance testing.

Each week we updated our Teaching Assistant in laboratory sessions and our client and users through a combination
of slack. The continuous stream of feedback we were able to received contributed greatly in building our system to
meet with their requirements and create a software that is up to expectations. Positive and negative feedback was given
each time along with advices which the team took into consideration whenever an element was being edited.

Feedbacks have been mostly positive - the GUI and the querying has both been approved by the users. However, there
are parts in openEHR Explorer that are less developed and has been mention and talked with the client. These will be
mentioned in Evaluation.

5.5 References

1. https://jestjs.io/

5.4. User Acceptance Testing 23

https://jestjs.io/

Team 27 Website Documentation

24 Chapter 5. Testing

25

Team 27 Website Documentation

CHAPTER 6

Evaluation

6.1 Summary of Achievements

6.1.1 Achievements Table

26 Chapter 6. Evaluation

Team 27 Website Documentation

6.1.2 Contribution Table

Work Packages Leo Christian Daniel
Client Liaison 40% 40% 20%
Requirements Analysis 34% 33% 33%
Research 33% 34% 33%
UI Design 30% 35% 35%
Programming 40% 40% 20%
Testing 100% 0% 0%
Bi-weekly Reports 33% 33% 34%
Project Website 20% 5% 75%
Poster Design 0% 50% 50%
Video Editing 0% 50% 50%
Overall Contribution 20% 40% 40%
Main Roles Back-end, Tester Front-end, Research Editor, Front-end

6.2 Critical Evaluation of Project

6.2.1 User Experience

Our foremost focus was user experience. openEHR Explorer was created with unexperienced developers in mind who
are likely to not yet be comfortable in the clinical field. We strongly believe that the GUI is very user-friendly and
users of any skill level will not find openEHR Explorer difficult to fully use.

6.2.2 Functionality

While we have achieved all of the essential features regarding the management and the querying of CDRs in general,
we could not complete the more complicated tasks specifically related to templates and archetypes.

6.2.3 Stability

The application itself functions without problems even if one or more CDRs in the list is unaccessable or down. The
UI is robust and is highly unlikely that a user will be able to directly cause problems that will affect the stability of the
system.

We have used Electron to develop the application - this ensures that it can be used cross-platform. An executable file
can be created to easily distribute the software whenever necessary.

6.2.4 Efficiency

The simple-yet-straightforward UI means that the user will have a clear idea of what needs to be done and how to
carry out the actions that he desires to do. In extreme situations, a developer could change the application’s file system
to be executed asynchronously if the need rises for reasons such as an exceptionally long configuration file of CDRs.

6.2.5 Maintainability

TDD ensures that as much of the testable code is covered by unit tests, reducing the chance of errors and exceptions
rising in the future when the codebase is likely to have expanded.

6.2. Critical Evaluation of Project 27

Team 27 Website Documentation

Comments have been written within the code in parts where we believe it could cause confusion for any future devel-
opers who are looking at the code.

Version control has been used since the beginning of the project and versions can be tracked back. Branches were used
in situations where more than one person contributed to the code to minimise conflicts when developing concurrently.

The back-end was developed independantly from the front-end so that future developers would be able to incorporate
their own libraries or user interface from or into the current openEHR Explorer ecosystem.

6.2.6 Project Management

We had clearly communicated with each other from the very beginning to know each member’s strengths and weak-
nesses. Tasks were allocated so that all the members did not feel they were unjustly overcumbered.

Over time, we had formed strong friendships with each other and the team was able to bond exceptionally well. When
Leo McArdle had to leave due to personal health considerations, the remaining members - albeit devasted - did their
utmost best to fill the gap and carry out any tasks yet undone without lowering the standard.

6.3 Future Work

The team recognises that openEHR Explorer has yet to reach its full potential and that there are features that would be
greatly valued but are yet to be implemented into openEHR Explorer.

The missing aspect of openEHR Explorer with the greatest significance is the lack of features regarding templates -
from uploading templates into CDRs to the listing templates from multiple CDRs. The client had mentioned briefly
that the ultimate goal eventually for openEHR Explorer is to be able to create AQL queries by interacting with the
templates belonging to CDRs as AQL is not a language that is widely used and is quite specialised - new developers
in the clinical field often struggle. This means that the system will need to have features regardng templates in order
to reach its future goal. However, the client has also noted that visualisation of templates is a very difficult task to
manage and that it is not absoluely necessary as users will eventually become comfortable with AQL queries.

Nevertheless we were not able to implement any features regarding templates in the given timeframe, but we believe
that if further time was given, it would be possible to integrate template functionalities into openEHR Explorer and
bring the system closer to its ultimate goal of being able to build AQL queries by templates which would greatly lower
the difficulty of querying CDRs.

Other possible future implementations include: - Finer authentication system - More robust user identification system
- Friendlier method of sorting and selecting CDRs to query - Deleting multiple CDRs at once - Allowing user to
alter the layout of openEHR Explorer - More extensive use of the top navigation bar - Export the generated table to a
saveable file

28 Chapter 6. Evaluation

CHAPTER 7

Management

7.1 Legal Issues

Download the Legal Issues Document here.

7.2 User Manual

7.2.1 Logging in

When the application is opened, you will be greeted with the login screen:

29

https://liveuclac-my.sharepoint.com/:b:/g/personal/zcablgp_ucl_ac_uk/EVX-dzc90A1Osins47AWgcgB7BxF9VSGvsHVfkyFQvbQCg?e=ad1LFT

Team 27 Website Documentation

Enter any name you wish(Case sensitive, Whitespace sensitive) and click the ‘Continue’ button.

You will then be transferred to the main page:

7.2.2 Manage CDRs

After logging in, you can add a new CDR to the list clicking the ‘Add New’ button, which will transfer you to the
addition page:

30 Chapter 7. Management

Team 27 Website Documentation

Fill in the details and press ‘Continue’. This will add the CDR to the list and automatically save the changes to the
configuration file, saving the list for use at another time. The text boxes will be emptied so allow you to add additional
CDRs.

To return to the main page, click on the ‘Main’ button on the right of the top navigation bar.

CDRs can be removed from the list by clicking on the bin image next to the CDRs.

7.2.3 Querying

In the main page, you can query one or more CDRs from the list by clicking and selecting the corresponding boxes.

Enter AQL in the top left textbox and click the ‘Query’ button to execute the AQL. The results will be returned as a
JSON tree, shown below:

7.2. User Manual 31

Team 27 Website Documentation

Clicking on the ‘Create Table’ button will generate a table from the JSON tree and display it on a new resizeable
window:

7.3 Deployment Manual

1. Clone repository from GitHub - found here.

2. Go to the repository in command line (e.g. Windows - cmd, Unix - Bash, etc.)

3. Ensure npm is installed. To check, enter

npm --version

If not installed, download NodeJS here.

4. Run the following commands:

#install dependencies
npm install
#starts the app
npm start

For instructions in greater detail, please refer to the README.md in the GitHub repository.

32 Chapter 7. Management

https://github.com/ucl-openehr-explorer/electron-app
https://nodejs.org/en/

Team 27 Website Documentation

7.4 Gantt Chart

Download: Excel, PDF.

7.4. Gantt Chart 33

https://liveuclac-my.sharepoint.com/:x:/g/personal/zcablgp_ucl_ac_uk/EddD4HbUD4FEkKlI08mMlSoBrbcgmvjpi20g7Fau6najTw?e=5dupZP
https://liveuclac-my.sharepoint.com/:b:/g/personal/zcablgp_ucl_ac_uk/EZ0I4KjFKAJJlBiKSTcBNjcB_j77-0zpusPvz3PzjyynXQ?e=uyJjf8

Team 27 Website Documentation

34 Chapter 7. Management

CHAPTER 8

Glossary

8.1 openEHR

Open source standard for storing and handling EHRs. Official Website, What is openEHR?

8.2 EHR

Electronic Health Record: A collection of digitalised information about a patient(s).

8.3 CDR

Clinical Data Repository: A place where patients’ EHRs are stored.

8.4 AQL

Archetype Query Language: The query language used on CDRs.

8.5 Archetype

Little chunks of medical record. e.g. Medication orders, blood tests, etc.

8.6 Templates

Templates are a defined data set created by multiple archetypes as components. They are built independantly of CDRs.

35

https://www.openehr.org/
https://www.openehr.org/about/what_is_openehr

Team 27 Website Documentation

8.7 CORS

Cross-Platform Resource Sharing: a mechanism that allows restricted resources on a web page to be requested from
another domain outside the domain from which the first resource was served.

8.8 Federate

Combine data from multiple sources, in this context multiple CDRs. This is useful for the following re-
quests(situations):

• “I don’t care what CDR this data lives in, I just want a list of blood pressures for this patient regardless of
whether they were taken at the GP or hospital.”

• “Give me every patient with hypothyroidism across 12 London hospitals.”

8.9 Zoom

An online communications and conferencing software that uses cloud computing. Provides services such as video
conferencing, online chats, mobile contributions, etc.

36 Chapter 8. Glossary

CHAPTER 9

Abstract

openEHR Explorer is an open-source application to query openEHR CDRs, targeted at developers working in a clinical
context. Previously, developers did not have a standardised method of querying, and openEHR Explorer was created
to solve the problem. openEHR Explorer is able to query multiple CDRs concurrently with a single AQL query and
federate their results into a table.

37

Team 27 Website Documentation

38 Chapter 9. Abstract

CHAPTER 10

Key Features

• Login system to accomodate multiple users with different lists of CDRs.

• Supports authentication of CDRs from multiple vendors.

• One AQL to query one or more CDRs at once and federate results into a table.

39

Team 27 Website Documentation

40 Chapter 10. Key Features

CHAPTER 11

Demonstration Video

The video can be found at: https://youtu.be/jmtJvnSaQUg

41

https://youtu.be/jmtJvnSaQUg

Team 27 Website Documentation

42 Chapter 11. Demonstration Video

CHAPTER 12

Team Members

• Leo McArdle - leo.mcardle.17@ucl.ac.uk

Team Leader, Back-end Developer, Client Liason.

43

mailto:leo.mcardle.17@ucl.ac.uk

Team 27 Website Documentation

• Christian Martin Rios - chris.rios.17@ucl.ac.uk

Front-end Developer, Deputy Leader, Research.

44 Chapter 12. Team Members

mailto:chris.rios.17@ucl.ac.uk

Team 27 Website Documentation

• Daniel Kyung-Hwan Min - daniel.min.17@ucl.ac.uk

Secondary Front-end Developer, Editor, UI Design.

45

mailto:daniel.min.17@ucl.ac.uk

	Requirements
	Background
	Gathering Requirements
	Personas
	Essential Features - Must Haves
	Possible Features in the Future - Could Haves
	Use Cases

	Research
	openEHR
	Existing solutions
	Technologies
	Summary of Final Decision
	References

	HCI - Human Computer Interaction
	Design Principles
	Initial Sketches
	Personas Created
	Interactive Wireframe
	References

	Design
	System Architecture
	Page Flow Diagram
	Design Patterns
	CDR Query Library
	Electron App
	Implementation of Key Functionalities in Deliverable Version

	Testing
	Testing Strategy
	Unit and Integration Testing
	Automated Testing
	User Acceptance Testing
	References

	Evaluation
	Summary of Achievements
	Critical Evaluation of Project
	Future Work

	Management
	Legal Issues
	User Manual
	Deployment Manual
	Gantt Chart

	Glossary
	openEHR
	EHR
	CDR
	AQL
	Archetype
	Templates
	CORS
	Federate
	Zoom

	Abstract
	Key Features
	Demonstration Video
	Team Members

