

Welcome to UCL openEHR Explorer Website

Contents:

	Requirements
	Background

	Gathering Requirements

	Personas

	Essential Features - Must Haves

	Possible Features in the Future - Could Haves

	Use Cases

	Research
	openEHR

	Existing solutions

	Technologies

	Summary of Final Decision

	References

	HCI - Human Computer Interaction
	Design Principles

	Initial Sketches

	Personas Created

	Interactive Wireframe

	References

	Design
	System Architecture

	Page Flow Diagram

	Design Patterns

	CDR Query Library

	Electron App

	Implementation of Key Functionalities in Deliverable Version

	Testing
	Testing Strategy

	Unit and Integration Testing

	Automated Testing

	User Acceptance Testing

	References

	Evaluation
	Summary of Achievements

	Critical Evaluation of Project

	Future Work

	Management
	Legal Issues

	User Manual

	Deployment Manual

	Gantt Chart

	Glossary
	openEHR

	EHR

	CDR

	AQL

	Archetype

	Templates

	CORS

	Federate

	Zoom

Abstract

openEHR Explorer is an open-source application to query openEHR CDRs, targeted at developers working in a clinical context.
Previously, developers did not have a standardised method of querying, and openEHR Explorer was created to solve the problem.
openEHR Explorer is able to query multiple CDRs concurrently with a single AQL query and federate their results into a table.

Key Features

	Login system to accomodate multiple users with different lists of CDRs.

	Supports authentication of CDRs from multiple vendors.

	One AQL to query one or more CDRs at once and federate results into a table.

Demonstration Video

The video can be found at: https://youtu.be/jmtJvnSaQUg

Team Members

	Leo McArdle - leo.mcardle.17@ucl.ac.uk

Team Leader, Back-end Developer, Client Liason.

[image: _images/leo.jpg]

	Christian Martin Rios - chris.rios.17@ucl.ac.uk

Front-end Developer, Deputy Leader, Research.

[image: _images/chris.jpg]

	Daniel Kyung-Hwan Min - daniel.min.17@ucl.ac.uk

Secondary Front-end Developer, Editor, UI Design.

[image: _images/daniel.png]

Requirements

Background

openEHR - pronounced ‘open air’ - is an open specification for storing patient data used by clinicans and developers working in clinical contexts.
However clinical data are often messy and mixed up, and each clinical application had its own models, so moving data was very hard.
Everyone was building their models over and over again which kept causing problems. A new standard api to send models to but abstract data away from the database layer was needed.
Furthermore, this meant that only one CDR could be queried at once, which slowed down the work of the developers in the field.

Gathering Requirements

We were able to gather the requirements from the users through direct semi-structured interviews with both our users and our client by using Zoom.

Personas

The system will be used by developers who are working within the clinical field. We therefore created two personas -
an experienced developer who has been working in the clinical field for a long time, and a developer who has recently
transferred to the clinical field. They can be found in more detail in HCI.

Essential Features - Must Haves

	Requirements

	Type

	Register CDR environment variables*

	Functional

	Support different CDR authentication requirements*

	Functional

	Execute AQL on multiple CDRs and display the result

	Functional

	Federate the result of AQL statement from multiple CDRs

	Functional

	Check consistency of result of AQL statement from multiple CDRs

	Functional

	Commit composition to multiple CDRs

	Functional

	Easy-to-use GUI for new users

	Non-Functional

	System must run smoothly without any noticeable lag

	Non-Functional

	Register CDR environment variables

	Possibly import postman environment files

	Support different CDR authentication requirements

	Ethercis requires session tokens

	Marand ThinkEHR supports Basic authentication

Possible Features in the Future - Could Haves

	Requirements

	Type

	Upload a template to multiple CDRs

	Functional

	List templates from multiple CDRs

	Functional

	Visualise tempaltes and archetypes - show data constraints

	Functional

	Generate AQL from interacting with template visualisation

	Functional

	Authentication to support multipler users

	Non-Functional

	Generation of AQL from interaction with templates

	Functional

Use Cases

	Use Case

	Logging In (UC1)

	Description

	User enters login details and clicks login button

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	None

	Main flow

	
	User opens the app

	User enters his username

	Clicks button to go to main page and display CDRs

	Post-condition

	None

	Alternative Flow

	None

	Use Case

	Add CDR (UC2)

	Description

	User adds a new CDR from addition page

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	User has logged on

	Main flow

	
	User enters add CDR page

	User enters CDR details

	Clicks button to add the CDR

	CDR saved to the config file and a confirmation window pops up

	Change is reflected in the main page

	Post-condition

	None

	Alternative Flow

	None

	Use Case

	Remove CDR (UC3)

	Description

	User removes a CDR from list by clicking the bin button

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	User has logged on and one or more CDRs exist in the list

	Main flow

	
	User clicks on bin button next to CDR in list

	The CDR is removed from the configuration file

	Change is reflected in the main page

	Post-condition

	None

	Alternative Flow

	None

	Use Case

	Query AQL (UC4)

	Description

	User inputs an AQL query and clicks on the query button

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	User has selected CDRs they wish to query from the list

	Main flow

	
	User inputs AQL query into text box

	User clicks on the query button

	System processes and interprets the query

	Query result from the selected CDR(s) is returned as a JSON tree

	Post-condition

	None

	Alternative Flow

	Error: 400 Bad Request (i.e. Incorrect AQL query) (UC4.1)

	Description

	AQL query was incorrect and system has failed to process the query

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	User has selected CDRs they wish the query from the list

	Main flow

	
	User inputs AQL query into text box

	User clicks on the query button

	System processes and interprets the query

	System is unable to interpret the query as it is incorrect

	Error: 400 Bad Request is shown in the results box

	Use Case

	Create JSON Table (UC5)

	Description

	User creates a table of results from the given JSON tree

	Primary Actor

	User

	Secondary Actor

	System

	Pre-condition

	User and system has successfully completed a query

	Main flow

	
	User clicks on Create Table from JSON button

	System creates a table from the JSON tree

	The tree is displayed on a pop-up window

	Post-condition

	None

	Alternative Flow

	None

Research

openEHR

openEHR is a technology for e-health, consisting of open specifications, clinical models and software that can be used to
create standards, and build information and interoperability solutions for healthcare.[1]

Much of our research centred around understanding the openEHR ecosystem. Our client was an invaluable resource in this,
taking the time to explain its concepts and elements to us. We also did some research of our own, from information
avaiable online[1][2].

Existing solutions

Our client gave us access to a similar proprietary tool to the one we’d be building, Think!EHR Explorer.

[image: _images/thinkehr_explorer.png]
We tested the tool to get a feel what what potential users would be used to. Naturally, our aim was to go beyond what this tool
did, and make a tool capable of querying multiple CDRs concurrently.

Technologies

Languages

We settled upon JavaScript since all members of our team had used it in the past or were familiar with it, and our client
had recommended doing it this way.

We chose against making a browser-based webapp because CORS (Cross-Origin Resource Sharing) could have posed a problem with some
CDRs not being configured correctly to be queried from a browser.
So instead we decided to use Electron[3] to create a desktop application where this would not be a problem.
Creating a desktop application also means that we can create executable files which can be easily distributed to users.

We have also decided to incorporate elements of modern JavaScript such as ES6 modules,
Promises and the Fetch API, to build our project in a forward-thinking way and produce a future-proof solution.
While some of these features aren’t implemented in Node.js today, it is very likely that they will be in the very near future[4].
However for now, we can convert code written using them into JavaScript which current versions of Node.js can run using tools
like Babel[5].

Test Frameworks

While researching on modern, up-to-standard and effective ways of JavaScript unit testing, we found an article on the Internet
by Welldone Software[6] that had clearly laid out various information about testing on JavaScript. We therefore took the advices
found on the article and looked into using Jest for the openEHR Explorer.

Its documentation showed it to be a powerful testing framework, and when using it we found it very pleasant and straightforward.

For mocking HTTP requests and responses in our tests we found Nock[7].
Nock is particularly powerful because it allows one to run a real HTTP request in a test, save the response, and then
use those saved values in tests going forward. This is especially useful given our need to test querying against a complex
external API, where manually running the queries and copying the result over would be too tedious and error prone.

Documentation Generators

JSDoc[8] is the standard for annotating JavaScript code with documentation, and we decided on using documentation.js[9] to
turn that into readable documentation given its ease of use with minimal configuration.

Summary of Final Decision

Electron will allow us to create a multi-platform application and allow us to focus on the development of the system by
removing the chance of CORS causing a problem. A desktop application means that the system can also be distributed easily with
executable files to the users.

We will be using a multitude of modern tools such as Nock, Jest, etc. to effectively test our code as much as possible.

JSDoc will provide clear annotations and documentation for any future programmers who wish to contribute to in the development of
the openEHR Explorer.

All of the above come together to reach our goal - creating a smooth, forward-minded system that is able to match the needs
of the users.

References

	[1] https://www.openehr.org/about/what_is_openehr

	[2] https://specifications.openehr.org/

	https://specifications.openehr.org/releases/QUERY/latest/AQL.html

	https://openehr.github.io/specifications-ITS-REST/

	https://www.ehrscape.com/api-explorer.html

	[3] https://electronjs.org/

	[4] https://medium.com/@giltayar/native-es-modules-in-nodejs-status-and-future-directions-part-i-ee5ea3001f71

	[5] https://hackernoon.com/7-different-ways-to-use-es-modules-today-fc552254ebf4

	[6] Vitali Zaidman, “An Overview of JavaScript Testing in 2018”, 9th February 2018 [Online] https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2018-f68950900bc3

	[7] https://github.com/nock/nock#readme

	[8] http://usejsdoc.org/

	[9] https://documentation.js.org/

HCI - Human Computer Interaction

Design Principles

Ben Shneiderman outlines that there are eight design principles of HCI[1]. The team has decided to adopt some of the principles
of Shneiderman that we believed to be particularly important. This section will explore how the principles affected the team’s
implementation of the HCI:

	Consistency

	Our system has a universal theme/layout which prevents from causing confusion for a first time user.

	Shortcuts for frequent users

	While a simple and consistent design provides advantages for new users, frequent users may find this to be repetitive in certain parts of the system. We have therefore minimised screen movement in our system to allow the user to carry out similar tasks in quick succession.

	Easy revesal of actions

	It is always possible that even an experienced user will carry out an incorrect action, and being able to easily revert any changes in the system will provide relief for the user - for example in openEHR Explorer, a wrong CDR might be added; we have therefore allowed the user to easily remove any CDRs that is unnecessary/incorrect.

	Reduce short-term memory load

	‘limitation of human information processing in short-term memory requires that displays be kept simple’ - the team has followed Shneiderman’s statement and has reduced multiple page displays as much as possible, condensing the crucial functions of the system to be contained within a single page.

Initial Sketches

After we had gathered the requirements from the client and the users, we started sketching possible solutions prior to the creation of the first iteration of a prototype individually to increase the chances of each member devising a unique solution.
Once the sketches were completed by all three members, we compared the results to come up with a version that we used to create the first iteration of the prototype.

	[image: sketch1]

	[image: sketch2]

	[image: sketch3]

	[image: sketch4]

Personas Created

The team created two personas. The personas helped the team to come up with a HCI that would be enjoyed by a range of users.

	The first persona is of an experienced developer

[image: _images/persona1.jpg]

	The second persona is of a developer who is not yet familiar with the medical industry.

[image: _images/persona2.jpg]

Interactive Wireframe

https://projects.invisionapp.com/share/V9OIKT03CQS#/screens/325133873_Select_Cdr

First Iteration

From the gathrered requirements and the sketches produced, we were able to create our first iteration of a prototype:

[image: _images/sketchToProto.png]

Feedback

After we had completed the first prototype of the HCI, we allowed our potential users to experiment with it and give feedback on the first version.

[image: _images/feedbackOne.png]
Then, the group once again drew further sketches on a section of the solution that we had previously missed out - manipulation and the visualisation of the results data.

Second Iteration

Using the feedback and the new set of sketches, we were able to build upon the first prototype to expand its features.

[image: _images/firstToSecond.png]

References

	[1] Ben Shneiderman, ‘Shneiderman’s “Eight Golden Rules of Interface Design”’, 12th September 2013 [Online] https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design

Design

System Architecture

We decided to separate out the project into two components to make developing them concurrently easier, to make testing easier
in isolation, and finish the project with deliverables which are maximally useful to the openEHR ecosystem.

[image: _images/prototype_system_architecture.png]

Page Flow Diagram

[image: _images/page_flow_diagram.png]

Design Patterns

Iterators

Iteration solves the problem of accessing and traversing objects without exposing the data structure and representation.

In openEHR Explorer, an iterator is used to traverse through the list of CDRs for actions such as displaying the list itself.

Asynchronous Methods

Asynchronous methods solve the problems that could be caused by potentially long-running programs by allowing the next method
in the thread of execution to be invoked.

Promises allows for asynchronous programming to be employed in JavaScript and has therefore been extensively used for the
back-end of openEHR Explorer.

Test-Driven Development

Test-Driven Development (also commonly referred to as TDD) is an increasingly important aspect of programming. TDD ensures that
there is a very high coverage of testing of the code as each functionality has a corresponding test.

The team has followed the TDD methodology to ensure the back-end of the code has been thoroughly tested.

Factory

A factory is a that forms the basis of many software design patterns. A factory is an object that is used to create other objects -
a factory method is a subroutine that returns an object of varying class.

Factories are mainly used in openEHR Explorer to create the CDR objects.

Balking

Balking refers to the execution of an action when an object is in a particular state, and the method will not return anything
when the object is in an inappropriate state. For example, if an object needed to access a method in a file but it has been zipped,
an exception would be thrown/the object would ‘balk’ at the request.

The team has taken a slightly different approach to balking - we were unhappy with the idea of ‘no return’ defined by balking, so
instead we have decided to ensure that no balking would happen. For example, to avoid AQL queries from being executed on unwanted
CDRs, openEHR Explorer will deselect all CDRs by default upon startup.

Proxy

A proxy is an object serving as an interface to another class. This provides a controlled access to a particular object, and could
additionally provide functionalities when accessing the object.

In openEHR Explorer, all CDRs that have been saved by the users are stored on a configuration file - constantly reading this file
could be very resource-intensive if the file increases in size significantly. Therefore, a proxy has been used to provide access
to the stored values without having to load the configuration file over and over again.

CDR Query Library

Initial prototype source code [https://github.com/ucl-openehr-explorer/openehr-cdr-query/tree/eba929b8cc92a45b6cded642a9457be24b78d95a].

To handle retrieving data from CDRs, federating it, and committing new data to CDRs. In this initial prototype all that the
library is able to do is send an AQL query to one or multiple CDRs, and concatenate their results.

However it’s been built with modern development practices, which makes extending this functionality incredibly simple:

	We followed the test-driven development methodology, so the code is thoroughly tested:

[image: _images/prototype_travis.png]
 [https://travis-ci.org/ucl-openehr-explorer/openehr-cdr-query/builds/478416742?utm_source=github_status&utm_medium=notification]
	We used JSDoc and documentation.js to generate extensive API documentation for the code:

[image: _images/prototype_docs.png]
 [https://github.com/ucl-openehr-explorer/openehr-cdr-query/tree/eba929b8cc92a45b6cded642a9457be24b78d95a#api]
	We used the latest and greatest additions to JavaScript (ES6 modules, Promises, the Fetch API, among others), utilising Babel to make them backwards compatible with older JavaScript engines and versions of Node.js

By building this library in isolation from the Electron app, we give developers in the openEHR ecosystem the option of
incorporating this library into their own projects.

While in its prototype phase it only runs in Node.js, with only a little work it could be made to work in the browser too.

Electron App

Data Storage

We have decided to use JSON to store the credentials of the CDRS as it is human readable and is widely used as a configuration
file across the industry.

Initial Prototype

Initial prototype source code [https://github.com/ucl-openehr-explorer/electron-app/tree/aee92465da20285038f4539700db745d0bb454dd].

The Electron app utilises the CDR Query Library to provide a GUI which users can use to query CDRs.

[image: _images/prototype_gui.png]
In this initial prototype, users can add CDRs, send an AQL query to a subset of them, and get the raw data back.

Implementation of Key Functionalities in Deliverable Version

	
	Login system for users with different lists of CDRs

	
	Different users will have their own lists of CDRs they wish to query - openEHR Explorer can accommodate this problem.

	
	AQL querying to multiple CDRs

	
	The existing solution only allows the user to query a single CDR - openEHR Explorer allows querying of multiple CDRs at once.

	
	Return results from multiple CDRs in one federated JSON tree

	
	The client and users have expressed that they would like to see all the results combined into one.

	
	Creating a table from the JSON tree for greater readability

	
	While JSON trees are human-readable, a table can be used with ease by users with little previous experience.

	
	Adding CDRs from multiple vendors with different authentication systems

	
	Further strengthens the ability to query multiple CDRs at once.

	
	Removing saved CDRs from list

	
	User can easily remove any unused CDRs or CDRs with incorrect credentials from the list, preventing cluttering.

Testing

Testing Strategy

From the beginning of the development of the back-end, we have followed the TDD methodology to ensure high coverage of the code.
This will also help us create unit and integration tests.

We have used Jest - a testing framework developed and maintained by Facebook[1]. It is open-source and has become increasing popular
over the last few years. Jest’s primary advantage is that it works ‘out of the box’ without any configuration and it is very
simple to use.

Nock has been used to simulate/mock HTTP requests and responses as mentioned in Research.

Unit and Integration Testing

The TDD methodology has meant that thorough unit and integrations have been written during development. The integration tests
have been created as a composition of multiple unit tests that we seemed belonged together as a part of a group. For example, unit
tests that are querying CDRs have been grouped and can be performed in a series - below shows a snippet of the test of openEHR Explorer:

[image: _images/testSnippet.png]
Below shows an example of the above tests being run in a sequence.

[image: _images/prototype_travis_butdaniellaptop.png]

Automated Testing

Naturally, following the TDD methodology has given way to test automation. They can be run quickly through Jest and can be repeated
many time without difficulty.

User Acceptance Testing

User acceptance testing is especially important as a system which the user and the client are not satisfied with will see very little
use even if the system has thorough functionality testing. We have therefore given great attention to constantly receive feedback from
our expected users and client.

Our client is distinct from other usual clients in that the client will also be a user. Therefore our client was able to provide views of
openEHR Explorer both as a client and an user which is invaluable. We believe this has also significantly reduced the time taken of
the user acceptance testing.

Each week we updated our Teaching Assistant in laboratory sessions and our client and users through a combination of slack.
The continuous stream of feedback we were able to received contributed greatly in building our system to meet with their requirements
and create a software that is up to expectations. Positive and negative feedback was given each time along with advices which
the team took into consideration whenever an element was being edited.

Feedbacks have been mostly positive - the GUI and the querying has both been approved by the users. However, there are parts in
openEHR Explorer that are less developed and has been mention and talked with the client. These will be mentioned in Evaluation.

References

	https://jestjs.io/

Evaluation

Summary of Achievements

Achievements Table

[image: _images/achievementsTable.png]

Contribution Table

	Work Packages

	Leo

	Christian

	Daniel

	Client Liaison

	40%

	40%

	20%

	Requirements Analysis

	34%

	33%

	33%

	Research

	33%

	34%

	33%

	UI Design

	30%

	35%

	35%

	Programming

	40%

	40%

	20%

	Testing

	100%

	0%

	0%

	Bi-weekly Reports

	33%

	33%

	34%

	Project Website

	20%

	5%

	75%

	Poster Design

	0%

	50%

	50%

	Video Editing

	0%

	50%

	50%

	Overall Contribution

	20%

	40%

	40%

	Main Roles

	Back-end,
Tester

	Front-end,
Research

	Editor,
Front-end

Critical Evaluation of Project

User Experience

Our foremost focus was user experience. openEHR Explorer was created with unexperienced developers in mind who are likely to
not yet be comfortable in the clinical field. We strongly believe that the GUI is very user-friendly and users of any skill
level will not find openEHR Explorer difficult to fully use.

Functionality

While we have achieved all of the essential features regarding the management and the querying of CDRs in general, we could
not complete the more complicated tasks specifically related to templates and archetypes.

Stability

The application itself functions without problems even if one or more CDRs in the list is unaccessable or down. The UI is robust
and is highly unlikely that a user will be able to directly cause problems that will affect the stability of the system.

We have used Electron to develop the application - this ensures that it can be used cross-platform. An executable file can be
created to easily distribute the software whenever necessary.

Efficiency

The simple-yet-straightforward UI means that the user will have a clear idea of what needs to be done and how to carry out the
actions that he desires to do. In extreme situations, a developer could change the application’s file system to be executed
asynchronously if the need rises for reasons such as an exceptionally long configuration file of CDRs.

Maintainability

TDD ensures that as much of the testable code is covered by unit tests, reducing the chance of errors and exceptions rising in
the future when the codebase is likely to have expanded.

Comments have been written within the code in parts where we believe it could cause confusion for any future developers who are
looking at the code.

Version control has been used since the beginning of the project and versions can be tracked back. Branches were used in situations
where more than one person contributed to the code to minimise conflicts when developing concurrently.

The back-end was developed independantly from the front-end so that future developers would be able to incorporate their own libraries
or user interface from or into the current openEHR Explorer ecosystem.

Project Management

We had clearly communicated with each other from the very beginning to know each member’s strengths and weaknesses. Tasks were
allocated so that all the members did not feel they were unjustly overcumbered.

Over time, we had formed strong friendships with each other and the team was able to bond exceptionally well. When Leo McArdle had
to leave due to personal health considerations, the remaining members - albeit devasted - did their utmost best to fill the gap and
carry out any tasks yet undone without lowering the standard.

Future Work

The team recognises that openEHR Explorer has yet to reach its full potential and that there are features that would be greatly
valued but are yet to be implemented into openEHR Explorer.

The missing aspect of openEHR Explorer with the greatest significance is the lack of features regarding templates - from uploading
templates into CDRs to the listing templates from multiple CDRs. The client had mentioned briefly that the ultimate goal eventually for
openEHR Explorer is to be able to create AQL queries by interacting with the templates belonging to CDRs as AQL is not a language
that is widely used and is quite specialised - new developers in the clinical field often struggle. This means that the system
will need to have features regardng templates in order to reach its future goal. However, the client has also noted that
visualisation of templates is a very difficult task to manage and that it is not absoluely necessary as users will eventually become
comfortable with AQL queries.

Nevertheless we were not able to implement any features regarding templates in the given timeframe, but we believe that if
further time was given, it would be possible to integrate template functionalities into openEHR Explorer and bring the system
closer to its ultimate goal of being able to build AQL queries by templates which would greatly lower the difficulty of querying
CDRs.

Other possible future implementations include:
- Finer authentication system
- More robust user identification system
- Friendlier method of sorting and selecting CDRs to query
- Deleting multiple CDRs at once
- Allowing user to alter the layout of openEHR Explorer
- More extensive use of the top navigation bar
- Export the generated table to a saveable file

Management

Legal Issues

Download the Legal Issues Document here [https://liveuclac-my.sharepoint.com/:b:/g/personal/zcablgp_ucl_ac_uk/EVX-dzc90A1Osins47AWgcgB7BxF9VSGvsHVfkyFQvbQCg?e=ad1LFT].

User Manual

Logging in

When the application is opened, you will be greeted with the login screen:

[image: _images/login_screen.png]
Enter any name you wish(Case sensitive, Whitespace sensitive) and click the ‘Continue’ button.

You will then be transferred to the main page:

[image: _images/final_gui.png]

Manage CDRs

After logging in, you can add a new CDR to the list clicking the ‘Add New’ button, which will transfer you to the addition page:

[image: _images/add_cdr.png]
Fill in the details and press ‘Continue’. This will add the CDR to the list and automatically save the changes to the configuration
file, saving the list for use at another time. The text boxes will be emptied so allow you to add additional CDRs.

To return to the main page, click on the ‘Main’ button on the right of the top navigation bar.

CDRs can be removed from the list by clicking on the bin image next to the CDRs.

Querying

In the main page, you can query one or more CDRs from the list by clicking and selecting the corresponding boxes.

Enter AQL in the top left textbox and click the ‘Query’ button to execute the AQL. The results will be returned as a JSON tree, shown below:

[image: _images/after_query.png]
Clicking on the ‘Create Table’ button will generate a table from the JSON tree and display it on a new resizeable window:

[image: _images/query_and_table.png]

Deployment Manual

	Clone repository from GitHub - found here [https://github.com/ucl-openehr-explorer/electron-app].

	Go to the repository in command line (e.g. Windows - cmd, Unix - Bash, etc.)

3. Ensure npm is installed. To check, enter

npm --version

If not installed, download NodeJS here [https://nodejs.org/en/].

4. Run the following commands:

#install dependencies
npm install
#starts the app
npm start

For instructions in greater detail, please refer to the README.md in the GitHub repository.

Gantt Chart

[image: _images/gantt_chart.png]
Download: Excel [https://liveuclac-my.sharepoint.com/:x:/g/personal/zcablgp_ucl_ac_uk/EddD4HbUD4FEkKlI08mMlSoBrbcgmvjpi20g7Fau6najTw?e=5dupZP],
PDF [https://liveuclac-my.sharepoint.com/:b:/g/personal/zcablgp_ucl_ac_uk/EZ0I4KjFKAJJlBiKSTcBNjcB_j77-0zpusPvz3PzjyynXQ?e=uyJjf8].

Glossary

openEHR

Open source standard for storing and handling EHRs. Official Website [https://www.openehr.org/], What is openEHR? [https://www.openehr.org/about/what_is_openehr]

EHR

	Electronic Health Record:

	A collection of digitalised information about a patient(s).

CDR

	Clinical Data Repository:

	A place where patients’ EHRs are stored.

AQL

	Archetype Query Language:

	The query language used on CDRs.

Archetype

	Little chunks of medical record.

	e.g. Medication orders, blood tests, etc.

Templates

Templates are a defined data set created by multiple archetypes as components. They are built independantly of CDRs.

CORS

	Cross-Platform Resource Sharing:

	a mechanism that allows restricted resources on a web page to be requested from another domain outside the domain from which the first resource was served.

Federate

Combine data from multiple sources, in this context multiple CDRs.
This is useful for the following requests(situations):

	“I don’t care what CDR this data lives in, I just want a list of blood pressures for this patient regardless of whether they were taken at the GP or hospital.”

	“Give me every patient with hypothyroidism across 12 London hospitals.”

Zoom

An online communications and conferencing software that uses cloud computing. Provides services such as video conferencing, online chats, mobile contributions, etc.

Index

 _static/up.png

_images/after_query.png
Query Change User

AQL

COMPOSITION.problem_list.v1]

Select CDRs

@ @ c4h_nutshell https://cdr.codedhealth.org

contains (
EVALUATION b_a[openEHR-EHR- @ ichirf https://cdr.ichirf.inidus.cloud
EVALUATION.problem_diagnosis.v1] or
CLUSTER b_b[openEHR-EHR-
CLUSTER problem_status.v0])
where a/name/value="Problem list'

Query

Results:

[
{
"meta”: {
“href": "https://cdr.code4health.org/rest/v1/query/"

3

“aql™: "select\n e/ehr_id/value as ehrld,\n
e/ehr_status/subject/external_ref/id/value as subjectld,\n
e/ehr_status/subject/external_ref/namespace as
subjectNamespace,\n a/composer/name as

Z

Create Table

_images/chris.jpg

_images/achievementsTable.png
. Register CDR environment variables.

Support basic authentication on CDRs
support different CDR authentication
requirements

Execute AQL on multiple CDRs

Display results

Federate Results from multiple CDRs

Check consistency of result of AQL statement from

ultiple CDRs
Easy-to-use GUI

3

system runs smoothly without lags

Upload template to CORs

List templates from CDRs

5

Visualise templates and archetypes

E

Authentication to support multiple users

Generation of AQL queries from template
interaction

Must

Must.

Must

Must.

Must

Must.

Should

Could

Could

Could

Could

v Christian

v Leo

v Leo

v Leo, Christian

v Christian

v Leo

v Leo, Christian

v Christian, Daniel

v Christian, Daniel

* Leo, Christian,
Daniel

* Leo, Christian,
Daniel

% christian, Daniel

v Daniel

* Leo, Daniel

100%

20%

_images/add_cdr.png
Add CDR

Name
URL
Username

Password

Continue

_images/exampleSketch2.jpg
ol £

_images/exampleSketch3.jpg

_images/daniel.png

_images/exampleSketch1.jpg
Add

CDRs

_images/exampleSketch4.jpg
b \damK .
00 et oM (ywlaked helds
ondl s Muaan wa AL L

NTY ondh Sonds wad

GruMt hwe felecked Coils 7l] _

_images/feedbackOne.png
CCOMMENT MODE

Select CD Rs°
Add New ° Mark as resolved

lan McNicoll
O [Name ™
Suggest an import option to allow a postman
[|cor1 environment file to be dropped in.
[|corR2
[[cor3

K : =

_images/final_gui.png
Query Change User

Select CDRs

AQL

Write your AQL code here 1l c4h_nutshell https://cdr.code4health.org

il ichirf https://cdr.ichirf.inidus.cloud

Query
Results:

z

Create Table

nav.xhtml

 Table of Contents

 		
 Welcome to UCL openEHR Explorer Website

 		
 Requirements

 		
 Background

 		
 Gathering Requirements

 		
 Personas

 		
 Essential Features - Must Haves

 		
 Possible Features in the Future - Could Haves

 		
 Use Cases

 		
 Research

 		
 openEHR

 		
 Existing solutions

 		
 Technologies

 		
 Languages

 		
 Test Frameworks

 		
 Documentation Generators

 		
 Summary of Final Decision

 		
 References

 		
 HCI - Human Computer Interaction

 		
 Design Principles

 		
 Initial Sketches

 		
 Personas Created

 		
 Interactive Wireframe

 		
 First Iteration

 		
 Second Iteration

 		
 References

 		
 Design

 		
 System Architecture

 		
 Page Flow Diagram

 		
 Design Patterns

 		
 Iterators

 		
 Asynchronous Methods

 		
 Test-Driven Development

 		
 Factory

 		
 Balking

 		
 Proxy

 		
 CDR Query Library

 		
 Electron App

 		
 Data Storage

 		
 Initial Prototype

 		
 Implementation of Key Functionalities in Deliverable Version

 		
 Testing

 		
 Testing Strategy

 		
 Unit and Integration Testing

 		
 Automated Testing

 		
 User Acceptance Testing

 		
 References

 		
 Evaluation

 		
 Summary of Achievements

 		
 Achievements Table

 		
 Contribution Table

 		
 Critical Evaluation of Project

 		
 User Experience

 		
 Functionality

 		
 Stability

 		
 Efficiency

 		
 Maintainability

 		
 Project Management

 		
 Future Work

 		
 Management

 		
 Legal Issues

 		
 User Manual

 		
 Logging in

 		
 Manage CDRs

 		
 Querying

 		
 Deployment Manual

 		
 Gantt Chart

 		
 Glossary

 		
 openEHR

 		
 EHR

 		
 CDR

 		
 AQL

 		
 Archetype

 		
 Templates

 		
 CORS

 		
 Federate

 		
 Zoom

_images/leo.jpg

_images/login_screen.png
Log In

Username |

Continue

_images/firstToSecond.png
First prototype: — Second prototype:

Query | Input SelectCDRs Select Template Query Input
=1
. ey |

o [t + | e ®

e R —r—
Doms
Dconz

st [E=x]

©® [wmpiate 1 x 1

O [wwpiate 2 x O

O [wweiae 3 x x g
]
=]

_images/gantt_chart.png
Team27 openEHR Explorer Gantt Chart

Select a period to highlight at right. A legend describing the charting follows. _ys Plan Duration [Actual start [l % complete [Actual (beyond plan) [l % Complete (beyond pian)

PLAN ACTUAL ACTUAL PERCENT
DURATION START DURATION COMPLETE PERIODS/WEEKS
123456 7 8 9 1011

ACTIVITY PLAN START

12 13 14 15 16 17 18 19 20 21 22

Roles Decision 1 1 1 1 bl
Requirements Analysis 2 3 2 2 100%
Research 2 4 2 3 100%
Hel 3 3 3 2 100%
Ul Design 3 2 3 2 100%
Prototype 1 4 2 4 2 100%
Website Editing 1 6 3 7 3 100%
Prototype 2 6 2 6 2 100%
Implementation (Front) 8 12 8 14 100%
Implementation (Back) 8 10 8 10 100%
Website Editing 2 2 2 2 2 100%
Poster 16 2 16 2 100%

100%

Videos 21 2 21 2

_images/persona2.jpg
John Acton-Wright

“It can be hard trying to work with
the current solution as I'm still

getting used to unfamiliar terms. |
hope a new solution can fix this.”

John is a young developer who has recently
started working for NHS Digital. While he is
comfortable with general aspects of
development, he has yet to famiarise himself
with openEHR(Electronic Health Record),
CDR(Ciinical Data Repositories) and AQL. A
system that even new users can use without
dificulty would be greatly appreciated by
John

image reference: htps:

o com 1-things developers-dove-hearing-from-no-develo

Name John Acton-Wright
Type Developer
Role Potential User

Needs
= Aconcise interface where AQL would be
input

= Clarity of the purpose of different parts of
the system — |.e. between selecting a COR
and selecting a template.

= Displaying AQL results in difierent
formats.

Would like to see

= Usabilty for those unfamiliar with medical
terms,

= Generation of GraphQL results

= Possibly a documentation of the proposed
solution that could help future developers
who are not experienced in the given
industry

Frustrations

= Lack of explanation of medical terms in
existing solution.

= Difficuly of navigation of diflerent parts of
the existing solution

Behaviours

Knowledge

Low o
Experience

u... o
Confidence

Aberaios Orposic behaiour
Help Use

Aberaios Orposie behaiour

Frequency of Use of System

Abchaior Opposte enaviour

ThoughtWorks

_images/prototype_docs.png
CDR
A connection to a single Clinical Data Repository
Parameters

® config Object CDR configuration
© config.url String APl URL (without a trailing /)

o confi ication Object

= config.authentication.type "basic” Type of authentication (currently only supports Basic)
= config.authentication.usernane String Username for authentication
= config.authentication.password String Password for authentication
query
Runs an AQL query against the CDR
Parameters
@ aql String The AQL query to run

Returns Promise <Object> A promise resolving with the parsed JSON result of the query from the CDR, or rejecting with a
CDRError

_images/page_flow_diagram.png
Login Screen

Togin Name

Change User

Return to Main-

Main Page

-Adding CDRs Add CDR Page onig File

Send Query

Query
interpretation ang|
Execution

Query

Removing COR:

Click Remove Button

Create Table

JSON Tree

_images/persona1.jpg
Leonard Smith

-

e |

et st comiphotladl besr by <ok 204531

“It would be much easier
if templates could be
uploaded to different
CDRs at the same time”

Leonard is an experienced developer who
works for NHS Digital. He finds it tedious to
have to send queries to diflerent Clinical Data
Repositories s he has to use various
platforms to do 5o, which makes the job hard
He enjoys querying in AQL and acts as a
consultant for the rest of the team.

Name Leonard Smith
Type 30yearold
Role Developer

Needs

Switching between different target CDRs.
Lists of available openEHR artefacts.
Displaying of resultsin diferent formats

Would like to see

Uploading templates to difierent CDRs at
the same fime.

Manipulation of CDR made easier,
including running AQL statements on them
and geting results

Generation of GraphQl interfaces
Friendly User Interface to improve the flow
of work and ease of use and leaming

Frustrations

Inabilty to browse openEHR artefacts held
in design-{ime repositories.

Some CDRs vendors do not provide:
addiional tooling, this is a sefback to
developers when it comes to buiding
queries and browsing data repositories.

Behaviours

Knowledge

Low ' o
Experience

Low t o
Confidence

Low t o
Help use

Low L] o

Poental use of system

|

Low on
Mofivation
Low Hon

ThoughtWorks

_images/prototype_gui.png
openEHR Explorer x

File Edit View Window Help

AQL Select CDRs Add New
SELECT e/ehdfvlue FROM HHiR e “ CDR1 httpsy/cdr.codedhealth.org

“ CDR 2 https://cdr.code4health.org

Query

Results:

[
{
"meta": {
"href": *https://cdr.codeahealth.org/rest/v1/query/"
13
"aq": "SELECT e/ehr_id/value FROM EHR e",
“executedAq]": "SELECT e/ehr_id/value FROM EHR e,
"resultSet": [
{
"#0" "8c52f5fc-317a-48fa-9bd3-0bf29f0f7d33"

_images/prototype_system_architecture.png
gLectlon)

s hal ot

! cor Queny
Ve - - - > 38 Ligrary
1 tevtn Auso

i B useo

a
/ Vosr
T,
] [a]

™

cpr
—

_images/prototype_travis.png
$ npm test 3.345

> openehr-cdr-query@e.0.3 test /home/travis/build/ucl-openehr-explorer/openehr-cdr-query
> node_modules/standard/bin/cnd.js & ./node_modules/jest/bin/jest.js

PASS tests/index.test.js
querying COR

© successfully (27ns)

© returns no results (4ns)

© with malformed AQL (1ins)

© with invalid authentication (34ms)
querying multiple CORs

© successfully (9ms)

Test Suites: 1 passed, 1 total

Tests: 5 passed, 5 total
Snapshots: 0 total
Time: 1.615

Ran all test suites
The command "npm test” exited with 0.

_images/sketchToProto.png
Select CDRs

Select Template

Query | Input SetectCORs | Select Template
[Covesa]

© [remplate 1

Template 2
O [remplate 3

_images/testSnippet.png
describe(’querying CDR', () => {
test("successfully’, async () = {
await nockBack(’query_success.json')
const res = cdr.query("SELECT TOP 1 e/ehr_id/value AS id FROM EHR ')
await expect(res).resolves.toEqual({
meta’: {
*href: "https://cdr.codedhealth.org/rest/vl/query/"
I
*aql’: "SELECT TOP 1 e/ehr_id/value AS id FROM EHR e',

"executedAql’: 'SELECT TOP 1 e/ehr_id/value AS id FROM EHR e',
‘resultSet’: [
{
'id": '8c52f5fc-317a-48Fa-9bd3-0bF29F0F7d33"
¥
1
»

i

test(“returns no results’, async () = {
await nockBack(’query_none.json’)
const res = cdr.query("SELECT TOP @ e FROM EHR e')
auait expect(res).resolves.toEqual({})

i

_images/prototype_travis_butdaniellaptop.png
abcalx1@DESKTOP-CFMOO2H: /mnt/c/Users/Daniel Min/Documents/Projects/openchr-cdr-query$ npm test

> openehr-cdr-query@0.0.3 test /mnt/c/Users/Daniel Min/Documents/Projects/openehr-cdr-query
> node_modules/standard/bin/cnd. js 8& ./node_modules/jest/bin/jest.3s

tests/index.test.js
querying CDR
© successfully (27ms)
© returns no results (3ms)
© with malformed AQL (4ms)
© with invalid authentication (3ms)

_images/query_and_table.png
Query ange User

@ Query Results - o X
File Edit View Window Help

AQL 0 composerld Problem_Diagnosis_value Body site_code compositionid Problem_Diagnosis_code subjectld entryld
COMPOSITION.problem_list.v1] "f1e1fb56-4a38-4fb4- “09334k
contains (b8b4-

ion”) 9c87-4e
EVALUATION b_a[openEHR-EHR- 1 "G33567 Hypertension null 7796fa78b20f:98aa716e- “38341003 9999999068 870b-
EVALUATION.problem_diagnosis.v1] or 8bc6-40f6-a5a3- e44d65¢
CLUSTER b_b[openEHR-EHR- 84518c4c60ef:
CLUSTER problem_status.v0]) "113a0793-b465-49f2-
. . "3575b¢
where a/name/value="Problem list . 99d2- {0974
"R t tract -
|2 "G33567" :C:."eT drnany Rt 381e4803ecfc:98aa716e- "197927001" "9999999068" <
nfection aa49-
Que ‘ 8bc6-40f6-a5a3-
84518c4c60ef:1" babdod
. c4c60ef::
Results:
"28a1869b-4fe9-477c- "
"b05e0z
I 8739- 5064-43
{ 3 "G33567" "Dupuytren’s contracture” "85151006" 97002c2e504::98aa716e- "274142002" "9999999068" 50 i
. a50e-
meta” { 8bc6-40f6-a5a3- y
“href": "https://cdr.code4health.org/rest/v1/query/" 84518c4c60ef-1" 8aac102
3
“aql": "select\n e/ehr_id/value as ehrld\n b98d6e0d-4088-4960- "dd595¢
e/ehr_status/subject/external_ref/id/value as subjectld,\n b744- cbca-4b
5 4 "G33567" "Migraine” null 0a401c8372dc:98aa716e- “37796009" "9999999068"
e/ehr_status/subject/external_ref/namespace as 99b1-
. 8bc6-40f6-a5a3-
subjectNamespace,\n a/composer/name as 6e7a56¢

84518c4c60ef:1"

»

Create Tal

_static/comment-bright.png

_images/thinkehr_explorer.png
Q ‘ auery - ‘ DocumEN

AQLT x

| romvounom

Ehr || Composition | Versioned Data
i

VersionedObject
T value
1 SELECT e FROM EHR e |
L Did
T value
L T namespace
T type
1 time._created
- T, trunk_fecycle_state
bt Version
41D uid
Execution:129ms | Query: 32ms | Rows: 20
Export + — j
ehr_id
other_details.
ttems
Administrative
Gender Birth Sex Vital Status
PEEPS value s is_modifiable & value & value & value ¢
' COTA2000-1200-4corb906 SGTR2EZTH | true vae vae Ane
2 Occbsle-264-4155-0020.20008 2253 e vale vale Ane
3 79778440670-4823-acke bOCCOI2a68 | true Fenaie Fenaie Ane
B €00S506-600- 4200 Bo01-760500cR08 e Fomale Fomale Ane
s 20600600.c181-467-80T0-SaB108%0082 | true Fenaie Fenaie Ane
Sctosss2.2618-4607-blas 950c3a683eed e Fonao

(ed to: Inidus | Domain: a7b6me

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

